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RUNGE-KUTTA METHODS
FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS

D.W. ZINGG AND T.T. CHISHOLM

Abstract

Three new Runge-Kutta methods are presented for numerical integration of systems of linear
inhomogeneous ordinary differential equations (ODEs) with constant coefficients. Such ODEs
arise in the numerical solution of the partial differential equations governing linear wave
phenomena. The restriction to linear ODEs with constant coefficients reduces the number of
conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used
to develop methods which are more efficient than conventional Runge-Kutta methods. A
fourth-order method is presented which uses only two memory locations per dependent variable,
while the classical fourth-order Runge-Kutta method uses three. This method is an excellent
choice for simulations of linear wave phenomena if memory is a primary concern. In addition,
fifth- and sixth-order methods are presented which require five and six stages, respectively, one
fewer than their conventional counterparts, and are therefore more efficient. These methods are

an excellent option for use with high-order spatial discretizations.

Introduction

We consider the numerical integration of large linear inhomogenous systems of ordinary

differential equations in the form

du _ _
i Au-g(t) (1)

where A is an M by M matrix whose elements depend on neither u nor ¢, and u and g(t) are
vectors of length M. Such essentially autonomous systems arise in the numerical solution of
partial differential equations (PDEs) governing linear wave phenomena after application of a
spatial discretization such as a finite-difference, finite-volume, or finite-element method.
Examples of such PDEs are the linearized Euler equations governing acoustic waves and the
Maxwell equations governing electromagnetic waves. The elements of A depend on the PDE
and the spatial discretization. The inhomogeneous term g(r) is associated with either a source
term or the boundary conditions. In the context of wave propagation, the system of ODEs is



often mildly stiff with the eigenvalues of A typically lying near the imaginary axis.

The system of ODEs arising from the application of a spatial discretization to a system of
PDEs can be very large, especially in three-dimensional simulations. Consequently, the
constraints on the methods used for integrating these systems are somewhat different from those
which have driven much of the development of numerical methods for initial value problems.
Due to their high accuracy and modest memory requirements, explicit Runge-Kutta methods
have become popular for simulations of wave phenomena [5,6,7,15,17]. Third- and fourth-order
methods requiring only two memory locations per dependent variable are particularly useful
[3,13,14]. This property is easily achieved by a third-order Runge-Kutta method [14], but an
additional stage is required for a fourth-order method [3]. Since the primary cost of the
integration is in the evaluation of the derivative function, and each stage requires a function
evaluation, the additional stage represents a significant increase in expense. For the same reason,
error checking is generally not performed when solving very large systems of ODEs arising from
the discretization of PDEs.

There have been several attempts to develop efficient methods for integrating linear systems
of ODEs {4,9,10,11]. The basic premise of these methods is that the major cost in evaluating the
derivative function is in forming the matrix A and the vector g(z). In the application considered
here, the simulation of linear wave phenomena, the matrix A is never explicitly formed or
stored. Hence the methods previously proposed for linear systems are not appropriate for this

application.

It is well known that a Runge-Kutta method with p stages has an order of accuracy not
exceeding p [1,2]. For p<4, methods of order p can be derived with p stages. However, fifth-
and sixth-order methods require at least six and seven stages, respectively. Nine stages are
required for seventh-order accuracy and eleven for eighth-order accuracy [1]. Since the cost for
our application is roughly proportional to the number of stages, this represents a significant
limitation of higher-order Runge-Kutta methods.

Several authors have considered various approximations to reduce the number of stages and
the storage requirements of high-order Runge-Kutta methods. Shanks [12] was able to develop
schemes with a reduced number of stages by requiring only that the accuracy conditions be
approximately satisfied. Zingg et al. [16,17] propose methods with low storage requirements
which are of high order for linear homogeneous ODEs but second-order otherwise. A similar
idea was proposed previously by Lorenz [8].



In this paper, we develop Runge-Kutta methods specifically for linear ODEs with constant
coefficients. By removing the constraints imposed by nonlinearity in the derivative function,
high-order Runge-Kutta methods can be derived which are more efficient in some respect than
the classical methods. In the next section, we present a fourth-order method which requires less
memory than the classical fourth-order Runge-Kutta method. We then present fifth- and sixth-
order methods requiring fewer derivative function evaluations per time step than fifth- and

sixth-order Runge-Kutta methods applicable to nonlinear problems.

General Form of an Explicit Runge-Kutta Method

Without loss of generality, we consider the following scalar ODE:

du

il f(tu) (2)

A general p-stage explicit Runge-Kutta method can be written as

ky = £ty up)

i-1
ki = f (t,+c;h, u,+hY a;ik;) i=2,---,p (3)
j=1

P
Uyl = u,,+h2b,-k,-

i=1

where h = At is the time step, t,, = nh, and u,, is an approximation to u (,).

Low-Storage Fourth-Order Method

We consider first the case p = 4. With the constraints

€y = 4z
c3 =as +tax (4)
Cq4 = aq) tag2+au

there remain ten parameters. For fourth-order accuracy, there are eight conditions which must
be satisfied. Four of these arise even for linear homogeneous constant-coefficient ODEs. A
further three conditions must be met if the ODEs are inhomogeneous. The final condition is
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associated with non-constant coefficients or nonlinearity. Therefore, fourth-order Runge-Kutta
methods are a two-parameter family of which the classical method is a particular choice.

If we restrict our attention to linear constant-coefficient ODEs, the number of conditions is

reduced to seven. These are

4
ZC,'b,' =12
=2

c2a3bi3 +ba(crag +c3ass) = 146

caanagby = 1724 ()
4

S hicl = 173

i=2

4

S hic}; = 1/4

j =2

bycias, +bg(claq +c3ag) = 1/12

The reduction in the number of conditions to be satisfied does not permit us to reduce the

number of stages. However, we can obtain reduced storage requirements.

Following the approach of Wray [14], the requirement that only two memory locations be

used imposes the following three constraints:

b

as = as (6)
b, =ag

With these constraints, only two memory locations are required for both the dependent variable
and the value of the time derivative. Hence the method requires minimal storage even when
compact or spectral methods are used for the spatial discretization. With the memory locations
denoted A and B, the method proceeds as follows.

1. Initially, u, is stored in A, and B is empty.

2. The term k| = f(t,,u,) is evaluated and stored in B.



3. The quantity u, + ha3 k,, is calculated and stored in A.
4. The quantity u, + ha k) is calculated and stored in B.
5. The term k, = f(t,+c2h, up+haz k) is evaluated and stored in B.

6. The contents of the two memory locations are linearly combined to form

u, + h(asjk+asyk,), which is stored in B.

7. With a4 =a3;, another linear combination gives u, + h (a4 ki+a4zk,), which is stored
in A.

8. The term k3 = flt,+c3h, u,+h(asik+aszky)]is evaluated and stored in B.

9  The contents of the two memory locations are linearly combined to form

u, + h(as ky+aska+agsks), which is stored in B.

10. With b = a4 and b, = a4, another linear combination gives u, + h (b 1k +byky+b3k3),

which is stored in A.
11. The term k4 = flt,+cah, u,th(ask1+tagnk,+a 43k3)] is evaluated and stored in B.
12. The contents of the two memory locations are linearly combined to form uy, ;.

With the additional constraints imposed by the low-storage requirement, we are left with
seven parameters to satisfy the seven conditions given in eq. (5). Although this system may

possess more than one solution, the only solution we have found is
ay =c, =0.69631521002413, c3= 0.29441651741,
c4 =0.82502163765, b| =aq4; =a3 = 0.07801567728325,
ay =0.21640084013679, by =asn = 0.04708870117112,
a4 = 0.69991725920066, b3 = 0.47982272993855,

b4 =0.39507289160708

Five-Stage Fifth-Order Method

For the case p=5, we have, in addition to the constraints given in eq. (4), the following

condition:



¢s = asy+asp+asy+asy @)

Consequently, adding the fifth stage has produced five additional parameters for a total of fifteen.
The coefficients must satisfy the following eleven conditions in order to produce fifth-order
accuracy for linear constant-coefficient ODEs:

5
Th =1
i=1

5
ZC,'b,' = 12
i=2

craypbiy +bhy(cray +c3ass)+bs(crasy +c3asy +cgasy) = 1/6

c2a32a43b4 + bs[ca(agass +asasy)+ciagzasy] = 124

02032043054175 = 1/120 (8)
5

Shict =173

i=2

5

S hic} = 1/4

i=2

2 2 -
byclas, +balclan +c3awm) +bs(ciasy +casy +cjasy) = 1/12
S 4

Zb,‘C,‘ = 1/5

i=2

3 3 _
(bgagy +bsaxp +b5a52)c% +(bsasy + baags)cs +bsasscy = 1720
2 2 1+b 2 = 1/60
bslass(aspcs +aqgzc3) +aszazci)+baagzasncy =

Thus a four-parameter family of solutions is obtained. Several different criteria can be
applied in order to choose a method from this family. The following values have been found by
minimizing the L, norm of a vector containing the coefficients of the method:



with

az; =cp,=021, ¢3=043, c4=068, c5=0285,
ay; =0.47418546365915, a4y =0.13437223603429,
as, =0.26302355344001, b, =0.16574368303091,
a4y =0.57068167533284, as3 =0.10434139625551,
by =0.41041645692809, as4 =0.39377303853165,
b4 =-0.04092124960122, bs=0.37240141154501

b, =0.09235969809721

az) =cC3—asz, Q4] =C4— QA4 —a43,

as) =Cs5 —as3 —Aas53 —As4

Six-Stage Sixth-Order Method

With p =6, the following condition must be satisfied in addition to the constraints given in

eqgs. (4) and (7):

cg = ag) tag +aes +agq +aes

9)

Therefore, there remain twenty-one free coefficients. The requirement of sixth-order accuracy

for linear constant-coefficient ODEs produces the following sixteen conditions:
6
Ybi =1
i=]

6
Scib = 12
i=2

Crapbs +ba(craq +c3ag3) +bs(crasy +c3as3 +caasq)

+b6(C2062 +cC3a63 Tt Caa64 +Csa65) = 1/6

Coazpassbas +bslca(@sass +axas)+ciasass)

+bglags(@ssca +as3cy +asyca) +aea(as3cs +ag4yc7) +agzazcy] = 1724



b6[065[054(a43€3 +a42€2)+05303202]+06404303202} +bsasgagzazcy, = 1/120
6‘2032043054065176 = 1/7120 (10)

6
Shic? =173
=2

6
S hic; = 1/4
[ =2

2 2 2
byclaz +by(clan +clags) +bs(ciasy +c3ass +ciass)

+b6(a65c§ +a64c3 +063C§ +(1626‘%) = 1/12
6
Y hici = 1/5
)

3 3

(bsas +bias, +bsasy +beagy)cy +(bsasz +bgags +beags)cs
+(bsasy +b6064)C2 +b6065cg = 1220

2 2 2 2 2+ 2]

bglags(asycs +asicy +asqcy) +aea(ascy +a43c3)+a63a3202

2 7 _
+bslass(agcs +agscl)+asyancil+bgasasc; = 1/460

6
Y bic; = 1/6
(=2

be(agych +aech +aecs + ags5c?)
+b5(a52cg +a53cg +a54c2)+b4(a42c3 +a43c‘3‘)+b3a32cg = 1730
c3lbgagsasy +aeaasn +aeasn)+bs(@ssaqn +as3asy) +basas]
+c3[be(agsass + aga@as) + bsassas) +cabeaesass = 1/120

2 2 2 _
belagsass(aszcl +ascs) +asasasncil+bsasqagzasnc; = 1/360

Using the same criterion as for the fifth-order method, the following coefficients have been
chosen from the five-parameter family of solutions to the above conditions (again possibly
nonunique):



ay) =c; =0.15,
¢5s =075, cg=0.90,
a4y = 0.09769454545455,
ag, = 0.20874226393025,
a4 = 0.48766666666667,
ag; = 0.12686271445897,
a4 = 0.44703799502007,
b, = 0.35718962665957,

bs =-0.00478351095633,

Ccy = 0.36,

cq =0.57,

a3, =0.45818181818182,

as, =0.10861879806510,
b, = 0.24971305394585,
as; = 0.04655817933320,
b3 = 0.11278150363005,
agq = 0.02734417934727,
ags = 0.37591957583530,

be¢ = 0.24659027402511

b =0.03850905269576

with

a3z =C3—asy G4 =C4— 042 ~ 443,

as) =Cs5—aspy —as3 —4dsa,

ag) =Ce —Ap2 —A63 — Qg4 —A65

Stability Contours

The stability contours of the three new methods are shown in Fig. 1. Satisfaction of the first
four conditions in eq. (5) ensures that the new fourth-order method has the same stability contour
as the classical fourth-order Runge-Kutta method. Similarly, the stability contours of the five-
stage fifth-order method and the six-stage sixth-order method are uniquely defined and do not

depend on which members of the respective families are selected.

Although the stable regions of the fifth- and sixth-order methods are somewhat larger than
that of the fourth-order method, the increase is not sufficient to compensate for the cost of the
additional stages. Therefore, the fourth-order method is a better choice if the time step is limited
by stability considerations. The stable regions of the fifth- and sixth-order methods do not
include the imaginary axis. Systems with pure imaginary eigenvalues are obtained when central
differencing is applied to the spatial derivatives in partial differential equations governing wave



propagation phenomena with no physical dissipation, in the absence of boundary conditions.
However, Zingg et al. [17] have demonstrated that by adding a small amount of numerical
dissipation to the spatial discretization, stable schemes can be obtained using such methods. The
amount of dissipation required is sufficiently low that the overall accuracy of the scheme is not
compromised. The stability contour of the method successfully used in [7] for simulations of the
propagation and scattering of electromagnetic waves is identical to that of the present sixth-order

method.

Fourier Error Analysis

Using Fourier analysis we can determine the errors produced by an integration method when
applied to a linear homogeneous ODE. Since our interest is in wave propagation, we consider a
scalar ODE of the form

du .
— = I 11
i u (1D
where o is a real constant. The Runge-Kutta methods developed here produce a solution in the
form
u, = c'ug (12)
where
RN PP 13
o= 3 o (13)
k=0 "

and p is the number of stages. The local amplitude and phase errors are determined from G as

follows
er, = |o| -1 (14)

tan"!(0;/5,)
b A

oh (15)

er, = —
where G, and o; denote the real and imaginary parts of G.

Figs. 2 and 3 show the local amplitude and phase errors produced by the three new methods.
In order to account for the number of stages, the errors are plotted versus wh/p. Hence the errors
shown are for approximately equal computational effort. Since the time step is thus proportional
to p, the amplitude error shown is |G| YP_1. The figures show that each increase in the order of
the method produces an increase in accuracy even though the extra work has been accounted for.



Hence the fifth- and sixth-order methods can be more efficient than the fourth-order method if a

sufficiently accurate spatial discretization is used.

An Example

In order to demonstrate the validity and correctness of the above derivations, we apply the
new methods and the classical fourth-order Runge-Kutta method to a sample inhomogeneous
linear scalar ODE given by

du

- = Au + ae¥ (16)

The exact solution is
a(e" - eM)
-A

when p# A. For the example, we use A=—1+5i, p=i, a=10, and «(0)=1. With these
parameters, the exact solution at ¢ = 2 is —2.60430984499756 — 0.20741391939986:. In the table
below, the magnitude of the errors obtained at r =2 are compared for time step sizes ranging
from 0.4 to 0.05. The classical fourth-order method is designated RK4, the new low-storage
fourth-order method, RK4L, the new fifth-order method, RKS, and the new sixth-order method,
RK6. In addition to showing the error magnitude, the table also shows the order of the method
estimated from the error at the time step indicated and the next larger time step. The main
results of the table are that the new methods approach the expected order of accuracy as the time
step size is reduced and that the low-storage fourth-order method is as accurate as the classical

u(t) = u@e™ + (17

method for inhomogeneous linear ODEs.

RK4 RK4L RK5 RK6
h error order error order error order error order
0.4 0.3437 - 0.3323 - 0.2761 - 0.0664 -

0.2 0.0343 3.33 | 0.0340 | 3.29 | 0.0059 554 | 8.63e-4 | 6.27

0.1 0.0020 | 4.11 0.0020 | 4.10 | 1.70e-4 | 5.12 | 1.24e-5 | 6.12

005 | 1.19e-4 | 406 | 1.19e-4 | 405 | 5.11e-6 | 5.06 | 1 87e-7 | 6.06

Table 1. Sample computations using the new methods.
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Conclusions

Three new Runge-Kutta methods have been presented for the integration of linear systems of
ODEs with constant coefficients. If the time step size is limited by stability, then the new
fourth-order method is the most suitable of the new methods. This method requires less memory
than the classical fourth-order Runge-Kutta method and less computational effort than the low-
storage method proposed in [3]. If the time step is limited by accuracy, and memory is a
secondary concern, then the new fifth- and sixth-order methods present an efficient new
alternative. Since the expense of the methods is roughly proportional to the number of stages for
the problems of interest here, the new fifth- and sixth-order methods are significantly more
efficient than their counterparts for nonlinear ODEs. The sixth-order method is a particularly
good choice for use with high-order spatial discretizations.
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Figure 1: Stability contours for the fourth-order (—), fifth-order (- - -), and sixth-
order (- - -) methods.
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Figure 2: Amplitude error produced by the fourth-order (—-), fifth-order (- - -}, and
sixth-order (: - -) methods.
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Figure 3: Phase error produced by the fourth-order (—-), fifth-order (- - -), and

sixth-order (- - -) methods.
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